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Abstract

Carbon dioxide emission is well recognized as the main source of global warming. The catalytic hydrogenation of carbon dioxide to methanol
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represents an effective method for preventing this side effect. The objective of this paper is to present a hybrid neural network model (NN
simulation of a differential catalytic hydrogenation reactor of carbon dioxide to methanol. The hybrid model consists of two parts: a m
model and a neural model. The mechanistic model employs heat transfer, mass transfer and pressure drop equations and calculate
temperature of the reactor by taking outlet mole fractions from the output of a neural network model.

The prepared hybrid model was used to simulate and identify an existing industrial methanol reactor. The bed of the reactor was as
a pile of layers, each corresponding to a neural network (NN) model that can predict outlet composition of each layer as a function o
model was successfully tested with plant experimental data. The insights of this research indicate a very fast responding model in co
traditional models to demonstrate CO2 reduction as a function of time and reactor length. Variation of temperature and other compositio
time and bed height are also investigated in this article.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

CO2 is considered to be the major cause of global warming.
The net increase of 13,000 million tonnes of carbon dioxide
estimated to be added to the atmosphere annually is alerting[1].
The rising level of CO2 is already affecting the atmosphere, sea
level and ecological systems. The global sea level rose 10–20 cm
over the past century and in this century it may rise by as much as
88 cm. The current atmospheric concentration of carbon dioxide
at 380 ppm is 30% higher than the pre-industrial level and is
expected to increase to somewhere between 800 and 1000 ppm
by the year 2010. The chemical reduction of carbon dioxide is
regarded as the most effective method to reduce carbon dioxide
concentration in the atmosphere[2]. Catalytic hydrogenation of
CO2 is one of the chemical reduction methods that can produce
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low grade hydrocarbons. Especifically, methanol is consid
to be the most valuable product because of its use as feed
to produce other valuable products[3].

For chemical reactor modeling, the accurate knowledg
kinetics is necessary. However, the kinetic modeling of com
chemical reactions usually suffers from a number of proble

1. Despite the fact that some reactions have been carrie
in practice for many years, reaction mechanisms still rem
not understood, e.g., hydrogenation of propionic anhyd
[4].

2. Large number of reactions and intermediates play signifi
roles in reaction systems.

3. In many cases, kinetic modeling depends on hidden state
ables, such as adsorbed surface components, gas phas
cals, or radicals (i.e. polymerization chain reactions) wh
concentrations cannot be quantified using conventional
surement techniques.
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Nomenclature

A output of network Input layer
Ai constant of Eq.(10)
Ac reactor surface area (m2)
B output of network hidden layer
Bi constant of Eq.(10)
C output of network
Ci constant of Eq.(10)
Cp specific heat (J/kg)
d diameter (m)
Di constant of Eq.(10)
E error
F neuron activation function
F total molar flow rate (mol/s)
I input data of network (mol/(s kg))
MPR methanol production rate (kg/day)
Mw molecular weight (g/mol)
M mass (kg)
N number of outputs in ANN
NC number of components
Nr number of reactions
P pressure (Pa)
r rate of formation in each time (kg)
Ri rate of reaction for reaction I (mol kg/(cat. s))
Re Reynolds number
T temperature (K)
T̄ average temperature (K)
U overall heat transfer coefficient (W/(m2 K))
ug gas velocity (m/s)
V weight on network Hidden layer
W mass of catalyst (kg)
Wij weight on network output layer
y mole fraction of specified component
z bed height (m)

Subscripts and superscripts
g gas
i component number
in input
0 zero time condition (fresh catalyst)
out output
p particle
r reaction
R reference

Greek letters
�H heat of reaction (J/mol)
ε bed voidage (m3/m3)
µ viscosity (Pa s)
ρ density (kg/m3)

4. Even in the presence of elementary reaction networks, the use
of unique global reaction rate law can be impossible because
the rate determining steps may change with varying operating
conditions. For instance for CO oxidation over Pt-alumina
catalyst, the rate determining step shifts from surface reaction
to adsorption depending on temperature[5].

5. In hydrogenation of CO and CO2 to produce methanol on
Cu/ZnO/Al2O3 catalyst, preliminary results indicated that it
is not possible to use Langmur–Henshelwood reaction rate
expression to predict the rate of reaction in low activities[6].

In addition to the above drawbacks leading to inaccuracies
in detailed kinetic models, such models are also not compu-
tationally tractable because they often lead to stiff differential
equations. The complexity of these models and their associated
solution times render them of little practical use for dynamic
unsteady state reactor simulations, for optimization studies and
for online process control applications. Adopting aNN approach
for solving kinetic problems can be an attractive alternative.

Neural networks have been used as a promising technique,
when complex reaction systems cannot be well identified, or in
the case of lack of basic knowledge of reaction mechanisms.
It has been claimed that artificial neural networks (ANN) are
120–5000 times faster than phenomological models[7], and can
therefore lead to significant reductions in computation times.
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ecently, ANN have been used to formulate kinetic mo
or biological as well as conventional chemical reactors[7–17].
arious aspects of kinetic modeling of chemical reactors
ultilayer feed forward networks have been studied by M

12]. This work makes no comparison and judgment about o
N architectures and training algorithms. In the work of J
t al. [13], only a back-propogation algorithm was conside
oth studies of Jose and Molga[12,13]based on simulation da

or training the NN. The effect of bed height was not studie
heir works.

Most published works on methanol synthesis and kine
ncluding our recent work[18], are based on mechanistic m
ls. No attempt has been made to incorporate the use of n
etworks in modeling such processes. In this paper, a h
eural network model is developed that combines both first
iple models and neural network models. The ANN is ado
o estimate the outlet composition only (Fig. 1) and the firs
rinciple model is used to calculate the outlet pressure and
erature from the reactor. The outlet temperature of each
as calculated by simultaneous solution of governing equa

heat, mass and pressure drop). The pressure drop acro
ed was calculated based on Ergun correlation[19]. Different
xperimental reaction conditions (feed composition, pres
nd temperature) are applied to the hybrid model.

ig. 1. Scheme of application of ANN in kinetic modeling, as a black
odel.
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The second part of this paper uses the developed hybrid model
to study an existing industrial reactor. Because the hybrid model
is based on experimental kinetic data from a lab scale reactor, the
bed of industrial methanol reactor was divided into differential
layers, each corresponding to the hybrid model conditions. The
output of each layer is fed as input to the succeeding layer. The
procedure is continued until the outlet of industrial reactor can
be estimated.

2. Hybrid simulation of reactor

Hybrid models may be developed in many different combi-
nations. Knowledge of the process can guide how to build them.
A usual approach is having the first principle model as the basis,
while the NN calculates unknown parameters. Another way is
using the NN to learn deviation between mathematical model
output and the aimed output. Another alternative is to use the
deterministic model as reinforcement for the relation between
inputs and outputs[8,20].

In this study, a NN model is used to learn the relationship
between certain input and output data. The input data are time,
pressure, temperature and feed compositions and effluent com-
positions are output data. The scheme is described inFig. 2.
The NN model receives information from input variables and
estimates output compositions. The results are then fed to a first
p and
p

2
d

ur in
m

C

C

C

Skrzypek et al.[21] indicated that only two of these equations
are stoichimetrically independent and can define an equilibrium
composition of gas mixtures. Approximating an internally
recycled reactor with a differential mixed flow reactor, the
governing equations in terms of component mass balance can
be expressed as:

Fyi − F0y0
i = WRi (4)

whereyi is the mole fraction of componenti, W the catalyst
weight in the reactor,Ri the rate of formation of componenti, F0

the total molar flow rate at the reactor inlet andF is the total molar
flow rate at the reactor outlet. The relationship betweenF andF0

in an isobaric non-isothermal CSTR reactor can be written as:

F = F0 + W

NC∑
i=1

Ri (5)

whereNC is the number of reaction components. The reaction
components in methanol synthesis are H2, CO, CO2, CH3OH
and H2O. CH4 and N2 are inert components. Combining Eqs.
(4) and(5) and rearranging gives:
yi − y0

i(
W
F0

)

 + yi

NC∑
i=1

Ri = Ri (6)

from which the mole fraction of componenti can be calculated
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.1. Mathematical modeling of Kuechen–Hoffmann
ifferential reactor (first principle model)

The following three reactions can be assumed to occ
ethanol synthesis:

O + 2H2 ⇔ CH3OH (1)

O2 + 3H2 ⇔ CH3OH + H2O (2)

O2 + H2 ⇔ CO + H2O (3)

Fig. 2. Hybrid model scheme.
t each time.
The exit pressure is calculated using Ergun’s equation[19]:

dP

dz
= −10−5

(
1.75+ 150

1 − ε

Re

) (
1 − ε

ε3

) (
u2

g
ρg

dp

)
(7)

here dP is pressure drop in increment dz, ε the bed voidage an
g, ρg anddp denote gas velocity, density and packing dia
er, respectively. Outgoing temperature is obtained by nume
olution of the energy balance equation:

NC

i=1

Min(i)
Cp

Mw
(Tin − TR) −

NC∑
i=1

Mout(i)
Cp

Mw
(Tout − TR)

+
Nr∑
i=1

(−�Hr(i)

Mw

)
ri − UAc(T̄ − T shell) = 0 (8)

here

¯ = Tin + Tout

2
(9)

r is the number of reactions andTR is a reference temperatu
ccording to Vanden Bussche and Froment[22], there are tw
quilibrium reactions and their ratesr1 andr2 could be obtaine

rom Eq.(6). Physical properties of methanol are obtained f
23] as:

µ = 67.2 × 10−7 + 0.21875× 10−7T̄ ,

Cp = 1000(Ai + BiT̄ + CiT̄
2 + DiT̄

3),

−�Hr(1) = 57980+ 35(T − 498.15),

−�Hr(2) = −39892+ 8(T − 498.15)

(10)

hereAi, Bi, Ci andDi are constants.
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Table 1
Comparison of mean square errors of various training algorithms

Training method M.S.E.

Back-propagation 3.0051× 102

Adaptive variable learning rate 0.7321
RP (resilient propagation) 2.2× 10−10

RBE 6.9× 10−11

RB 1.2× 10−10

2.2. Kinetic modeling with neural networks (NN model)

ANN inputs should be selected carefully if the best results are
to be achieved. The inputs should reflect the underlying physics
of the process to be analyzed. In the methanol reactor, inlet mole
fractions play a prominent role in affecting the system behavior.
Additionally, pressure, temperature and reactor operation time
have strong effect on the rate of methanol production. Experi-
mental data in terms of mole fractions of components reported
by Kuechen and Hoffmann[24] have been used in this study.
Two sets of experiments are used at two different space veloci-
ties. At a space velocity of 2.9 kg cat. s/mol, 118 data points for
a period of 1034 h of operation are obtained. At a space veloc-
ity of 3.1 kg cat. s/mol, 48 data points for a period of 426 h of
operation are used.

Various architectures of multi layer perceptron (MLP) and
radial basis function network (RBFN) are used to predict exper-
imental reactor outlet compositions. Among these architectures,
radial basis (RB) and exact RBFN (RBE) methods were found
to be able to generalize well. Each ANN was trained with 2/3 of
the data set and the remaining 1/3 was used for validation of the
trained NN and few data were used for validation of the hybrid
model as will be explained later.

As shown inTable 1, RBFN method is more accurate than
the other ANN structures.Table 1compares the mean square
error (M.S.E.) of various networks. Among the RBFN trained
n used
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Fig. 3. Estimation of H2 mole fraction in reactor effluent. Dotted line and square
experimental data correspond to condition A in the feed. Solid line and star
experimental data stand for condition B.

Fig. 4. Methanol mole fraction estimation NN predictions as a function of time
for two different conditions. Circles represent experimental data for condition
A, while squares represent condition B.

for the training range the network prediction of hydro-
gen outlet mole fraction matches the experimental data
very well.

Fig. 4represents the network estimation as a function of time.
This figure clearly shows the catalyst deactivation by the passage
of time.Fig. 5gives NN simulations at different temperatures.

Fig. 5. NN simulations of deactivation data at different temperatures. Feed
conditions are:P = 5 MPa, xH2 = 0.7011, xCO = 0.2390,xCO2 = 0.0599 and
xCH4 = 0.
etworks, RBE algorithm had a good performance and was
or the generation of the kinetic data with the hybrid model (S
ion 3). Table 2provides the percent error between simula
nd experimental results.

Fig. 3 compares the predictions of the NN with exp
ental data for two different inlet conditions, condition
f T = 513 K, P = 5 MPa,xH2 = 0.7022,xCO = 0.2780,xCO2 =
.0198 and xCH4 = 0.000077 and also for condition
= 513 K, P = 5 MPa, xH2 = 0.7020, xCO = 0.1490, xCO2 =
.1490 and xCH4 = 0.000085. It is obvious that the ne
ork cannot estimate well beyond the training range,

able 2
omparison of predicted data with experimental data of Kuechen and Hof
t condition A

ime (h) ExperimentalxH2 PredictedxH2 Error (%)

28 0.6904 0.6951 0.68
28 0.6997 0.7006 0.12
06 0.7010 0.7032 0.31
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Fig. 6. Configuration of hybrid industrial reactor identification based on dis-
cretization of reactor scale.

3. Application of hybrid model to an industrial reactor

As a third modeling effort, a hybrid neural network first
principle model is considered in this section. This model was
described briefly in Section2 (Fig. 2) and more details will be
given here. To identify the behavior of a real reactor, the bed of
reactor is first sliced into increments (Fig. 6). At each time, inlet
temperature, feed composition and pressure are fed to the top
of the reactor. A NN is used to estimate the outlet mole fraction
of the first layer. Pressure drop is calculated from Eq.(7), and
outlet temperature is obtained by trial and error as demonstrated
in Fig. 7. The outlet composition, temperature and pressure of
first layer are fed to the second layer and this process goes on
until the end of reactor is reached (Fig. 7). By repeating this pro-
cedure, temperature and composition profiles can be estimated.
The main reason for slicing the reactor is to have inlet conditions
within the range of those of the NN simulation training condi-
tions. Temperature and pressure of NN are close to the plant,
Shiraz petrochemical complex (SPC) methanol reactor. In order
to have smaller composition increments, the plant reactor has
been sliced into sections.

To validate the model, few experimental data of Kuechen
and Hoffmann[24], which were not used in training and gen-
eralization of the NN are considered. This validation may
seem obvious because our NN has been trained by Kuechen
and Hoffmann reactor experimental data. But the hybrid sim-
u ature
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Fig. 7. Hybrid ANN algorithm for packed bed reactor simulation.

Table 3
Shiraz petrochemical methanol reactor specifications

Quantity Value

Number of tubes 2962
Length of reactor (m) 7.022
Bulk density of bed (kg/m3) 1132
Void fraction of bed (m3/m3) 0.39

Table 4
Shiraz petrochemical methanol reactor feed inlet conditions

Quantity Value

CH3OH (mole%) 0.50
CO2 (mole%) 9.40
CO (mole%) 4.60
H2O (mole%) 0.04
H2 (mole%) 65.90
N2 (mole%) 9.30
CH4 (mole%) 10.26
Temperature (K) 503
Pressure (bar) 76.97
Total molar rate per tube (mol/s) 0.64
lation is also able to predict concentration and temper
rofiles inside the bed. This offers an additional flexib

hat the stand alone NN model of the previous section
ot provide.Fig. 8 gives the hybrid NN simulation resu

or methanol, CO, H2O and temperatures at the followi
onditions:T = 513 K,P = 5 MPa,xH2 = 0.7022,xCO = 0.2780
CO2 = 0.0198,xCH4 = 0, xH2O = 0 andt = 506 h. The simu
ations show the correct behavior as those of other resea
6,19]. In order to check our results further, we compared
oncentration of Kuechen and Hoffmann[24], reactor output t
hose obtained by the hybrid model. The actual concentr
f methanol, H2O and CO were measured at simulation co

ions to be 0.018, 0.0008 and 0.2700 while the hybrid m
redicts these concentrations to be 0.016, 0.0009 and 0.
espectively.

The hybrid NN model is validated further by using collec
ndustrial data from SPC methanol reactor[25]. Tables 3 and
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Fig. 8. Methanol, CO, H2O and temperature profiles from hybrid neural network simulations carried out at conditions:T = 513 K, P = 5 MPa,xH2 = 0.7022,
xCO = 0.2780,xCO2 = 0.0198,xCH4 = 0, xH2O = 0 andt = 506 h.

give reactor specification, and inlet and operating conditions
of this reactor, respectively. Introducing initial conditions and
specifications of SPC methanol reactor, hybrid NN simulations
were carried out to establish the performance of the proposed
model.Fig. 9 shows methanol mole fraction as a function of
time and bed height. To check the accuracy of results, methanol
production rate (MPR) is calculated from the equation:

MPR = FMw,methanol

∫ t

0
ymethanol|x=1 dt (11)

and is compared with plant actual output. After 100 days of
operation, the actual production was 296.5 tonnes/day while the
hybrid model predicts a production of 276.63 tonnes/day. This
represents a very good approximation. Simulation results for
other components are shown inFigs. 10–13. These figures show

Fig. 10. Hydrogen mole fraction vs. time and bed height.

mole fraction of components and temperature as a function of
bed height and for different times. TheZ direction is denoted
by the number of grid points used to assimilate the bed. Sharp
variation of temperature is observed in the 0–0.2 region of bed

Fig. 11. Mole fraction of CO as a function of time and bed height.
Fig. 9. Methanol mole fraction as a function of time and bed height.
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Fig. 12. Dynamic CO2 mole fraction profiles for industrial reactor.

Fig. 13. Estimation of water production inside the industrial reactor vs. operation
time.

Fig. 14. Variation of temperature inside the industrial rector by the passage of
time and length of reactor.

height as demonstrated inFig. 14. At bed heights beyond 0.2,
the temperature drops slowly with time.

4. Comparison of hybrid model with first principle
model

In this section, the performance of the hybrid NN model
is compared with the first principle model. The first principle
model consists of solving the governing heat, mass and pressure
drop equations. Fifteen coupled non-linear partial differential
equations were solved numerically to obtain the results[18].
SPC methanol reactor conditions are used in this comparison
task and the methanol mole fraction profile is selected as a com-
parison criterion. The bed height has been divided into 30 grid
points and profiles of methanol concentrations at three different
times are presented versus grid points inFigs. 15–17. The figures

Fig. 15. Comparison of hybrid and first principle models vs. bed grid points
after 25 days of operation.

Fig. 16. Comparison of hybrid and first principle models vs. bed grid points
after 50 days of operation.

Fig. 17. Comparison of hybrid and first principle models vs. bed grid points
after 75 days of operation.

confirm the accurate trend of the hybrid NN model predictions.
The hybrid model simulations were performed, however, on an
average of 240 times faster than the first principle simulations.
The ease of hybrid model simulation represents a major advan-
tage, especially when carrying out optimization studies.

5. Conclusion and remarks

In this work, the catalytic hydrogenation of carbon dioxide
to methanol has been considered. Three modeling approaches
were investigated: a first principle model, a NN model and a
hybrid model. The hybrid model employs both NN model and
first principle mechanistic model. The reactor outlet compo-
sitions are estimated in this hybrid model based on a neural
network approach, while temperature and pressure are calcu-
lated based on application of material and energy balances and
a correlation to estimate pressure drop. It was found that the
hybrid model outperforms the other two modeling approaches
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when compared to available experimental data. The performance
of the hybrid model was measured based on both model accu-
racies and computational effort. The hybrid model was also
employed in this work to simulate an existing industrial reac-
tor. In order to have inputs to the NN part of the model in the
same range as those the network was trained for, the indus-
trial reactor was sliced into increments and the application of
the model was carried out for each increment. The predictions
of the hybrid model were also acceptable for this industrial
reactor.
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