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Abstract

Carbon dioxide emission is well recognized as the main source of global warming. The catalytic hydrogenation of carbon dioxide to metha
represents an effective method for preventing this side effect. The objective of this paper is to present a hybrid neural network model (NNM) for 1
simulation of a differential catalytic hydrogenation reactor of carbon dioxide to methanol. The hybrid model consists of two parts: a mechanis
model and a neural model. The mechanistic model employs heat transfer, mass transfer and pressure drop equations and calculates the e
temperature of the reactor by taking outlet mole fractions from the output of a neural network model.

The prepared hybrid model was used to simulate and identify an existing industrial methanol reactor. The bed of the reactor was assimilate
a pile of layers, each corresponding to a neural network (NN) model that can predict outlet composition of each layer as a function of time. T
model was successfully tested with plant experimental data. The insights of this research indicate a very fast responding model in comparisc
traditional models to demonstrate €duction as a function of time and reactor length. Variation of temperature and other compositions with
time and bed height are also investigated in this article.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction low grade hydrocarbons. Especifically, methanol is considered
_ . . _ to be the most valuable product because of its use as feed stock
CO; is considered to be the major cause of global warmingto produce other valuable produdsj.
The net increase of 13,000 million tonnes of carbon dioxide For chemical reactor mode"ng’ the accurate know'edge of
estimated to be added to the atmosphere annually is al¢ting  kinetics is necessary. However, the kinetic modeling of complex

The rising level of CQ s already affecting the atmosphere, seachemical reactions usually suffers from a number of problems:
level and ecological systems. The global sea level rose 10-20 cm

over the past century and in this century it may rise by as much &
88 cm. The current atmospheric concentration of carbon dioxid
at 380 ppm is 30% higher than the pre-industrial level and is
expected to increase to somewhere between 800 and 1000 ppm
by the year 2010. The chemical reduction of carbon dioxide i [4]. . . . Lo
regarded as the most effective method to reduce carbon dioxi Large number of reactions and intermediates play significant

concentration in the atmosphdg3. Catalytic hydrogenation of roles in reaction systems.

CO, is one of the chemical reduction methods that can producg‘ Inmany cases, kinetic modeling depends on hidden state vari- .
ables, such as adsorbed surface components, gas phase radi-

cals, or radicals (i.e. polymerization chain reactions) whose
* Corresponding author. Tel.; +1 519 888 4567x7157. concentrations cannot be quantified using conventional mea-
E-mail address: aelkamel@uwaterlo.ca (A. Elkamel). surement techniques.

. Despite the fact that some reactions have been carried out
in practice for many years, reaction mechanisms still remain
not understood, e.g., hydrogenation of propionic anhydride

1385-8947/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
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output of network Input layer
constant of Eq(10)

reactor surface area @n

output of network hidden layer
constant of Eq(10)

output of network

constant of Eq(10)

specific heat (J/kg)

diameter (m)

constant of Eq(10)

error

neuron activation function

total molar flow rate (mol/s)

input data of network (mol/(s kg))
methanol production rate (kg/day)
molecular weight (g/mol)

mass (kg)

number of outputs in ANN
number of components

number of reactions

pressure (Pa)

rate of formation in each time (kg)
rate of reaction for reaction | (mol kg/(cat. s))
Reynolds number

temperature (K)

average temperature (K)

overall heat transfer coefficient (W/&K))
gas velocity (m/s)

weight on network Hidden layer
mass of catalyst (kg)

weight on network output layer
mole fraction of specified component
bed height (m)

Subscripts and superscripts

g

i

gas
component number

input

zero time condition (fresh catalyst)
output

particle

reaction

reference

Greek letters

AH

€
7
0

heat of reaction (J/mol)
bed voidage (m?3)
viscosity (Pas)

density (kg/ni)

4. Eveninthe presence of elementary reaction networks, the use
of unique global reaction rate law can be impossible because
the rate determining steps may change with varying operating
conditions. For instance for CO oxidation over Pt-alumina
catalyst, the rate determining step shifts from surface reaction
to adsorption depending on temperat[fke

5. In hydrogenation of CO and GQo produce methanol on
Cu/ZnO/ALO3 catalyst, preliminary results indicated that it
is not possible to use Langmur—Henshelwood reaction rate
expression to predict the rate of reaction in low activif&gs

In addition to the above drawbacks leading to inaccuracies
in detailed kinetic models, such models are also not compu-
tationally tractable because they often lead to stiff differential
equations. The complexity of these models and their associated
solution times render them of little practical use for dynamic
unsteady state reactor simulations, for optimization studies and
for online process control applications. Adopting aNN approach
for solving kinetic problems can be an attractive alternative.

Neural networks have been used as a promising technique,
when complex reaction systems cannot be well identified, or in
the case of lack of basic knowledge of reaction mechanisms.
It has been claimed that artificial neural networks (ANN) are
120-5000 times faster than phenomological moffglsand can
therefore lead to significant reductions in computation times.
Recently, ANN have been used to formulate kinetic models
for biological as well as conventional chemical reac{@rsl7]
Various aspects of kinetic modeling of chemical reactors with
multilayer feed forward networks have been studied by Molga
[12]. This work makes no comparison and judgment about other
NN architectures and training algorithms. In the work of Jose
et al.[13], only a back-propogation algorithm was considered.
Both studies of Jose and Mol§fE?,13]based on simulation data
for training the NN. The effect of bed height was not studied in
their works.

Most published works on methanol synthesis and kinetics,
including our recent workl 8], are based on mechanistic mod-
els. No attempt has been made to incorporate the use of neural
networks in modeling such processes. In this paper, a hybrid
neural network model is developed that combines both first prin-
ciple models and neural network models. The ANN is adopted
to estimate the outlet composition onli§. 1) and the first
principle model is used to calculate the outlet pressure and tem-
perature from the reactor. The outlet temperature of each layer
was calculated by simultaneous solution of governing equations
(heat, mass and pressure drop). The pressure drop across the
bed was calculated based on Ergun correlafi®j. Different
experimental reaction conditions (feed composition, pressure
and temperature) are applied to the hybrid model.

Reactor Parameters Reactor output
T > .+ Rate
e P * Activity
ot ® Selectivity
e Compositions

Fig. 1. Scheme of application of ANN in kinetic modeling, as a black box
model.
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The second part of this paper uses the developed hybrid model Skrzypek et al[21]indicated that only two of these equations
to study an existing industrial reactor. Because the hybrid modedre stoichimetrically independent and can define an equilibrium
is based on experimental kinetic data from a lab scale reactor, tttomposition of gas mixtures. Approximating an internally
bed of industrial methanol reactor was divided into differentialrecycled reactor with a differential mixed flow reactor, the
layers, each corresponding to the hybrid model conditions. Thgoverning equations in terms of component mass balance can
output of each layer is fed as input to the succeeding layer. Thiee expressed as:
Erocegiure is continued until the outlet of industrial reactor cang, _ o R @)

e estimated.
wherey; is the mole fraction of componeiit W the catalyst
weight in the reactoR; the rate of formation of component°
the total molar flow rate at the reactor inlet a@nid the total molar

Hybrid models may be developed in many different combi-N1ow rate atthe reactor outlet, The relationship betvu@an.dFO
n an isobaric non-isothermal CSTR reactor can be written as:

nations. Knowledge of the process can guide how to build thent

A usual approach is having the first principle model as the basis 0 Ne

while the NN calculates unknown parameters. Another way is“'L =F+ WzRi (5)

using the NN to learn deviation between mathematical model i=1

output and the aimed output. Another alternative is to use theshereNc is the number of reaction components. The reaction

deterministic model as reinforcement for the relation betweewomponents in methanol synthesis arg BO, CQ, CHzOH

inputs and outputf8,20]. and HBO. CH; and N\ are inert components. Combining Egs.
In this study, a NN model is used to learn the relationship(4) and(5) and rearranging gives:

between certain input and output data. The input data are time; Ne

pressure, temperature and feed compositions and effluent com-i — Vi + yile_ — R (6)

positions are output data. The scheme is describdeign2 (%) )

The NN model receives information from input variables and F

estimates output compositions. The results are then fed to a fiffbm which the mole fraction of componeintan be calculated

principle model to compute the reactor outlet temperature andt each time.

2. Hybrid simulation of reactor

pressure. The exit pressure is calculated using Ergun’s equdfiSh
dP 5 1 — & 1 — & 2 ,Og
2.1. Mathematical modeling of Kuechen—Hoffmann dz =-10 (1'75+ 150 Re ) ( &3 ) (”gdp (7)

differential reactor (first principle model) ) o ]
where P is pressure drop in increment,d the bed voidage and

The following three reactions can be assumed to occur iffg: g @nddp denote gas velocity, density and packing diame-
methanol synthesis: ter, respectively. Outgoing temperature is obtained by numerical
solution of the energy balance equation:

CO + 2Hz & CHgOH @ Ne
S M@~ (Tin = T) = > Moul)) 2 (Tour — Tr)
CO;+3Hy < CH30OH + H20 (2) p My, —~ My
CO;+Hz ¢ CO + H20 ®) N/ AH( =
1=
t, T, P, inlet comp. from
previous layer where
T — Tin + TOUt (9)
2
¥ N; is the number of reactions affg is a reference temperature.
NN:l According to Vanden Bussche and Fromf2#], there are two
equilibrium reactions and their ratesandr, could be obtained
¥ ¥ from Eq.(6). Physical properties of methanol are obtained from
First principle modle [23] as:
w=672x10"7+0.21875x 107 T,
‘ TP | | Outlet comp. Cp = 1000@A; + BT + C;iT? + DiY_"?’), (10)
1 ] —AHy(1) = 57980+ 35(T — 49815),
Next layer —AH(2) = —39892+ 8(T — 49815)

Fig. 2. Hybrid model scheme. whereA;, B;, C; andD; are constants.
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Table 1
Comparison of mean square errors of various training algorithms
Training method M.S.E.
Back-propagation 3.0054 107
Adaptive variable learning rate 0.7321
RP (resilient propagation) 2:210°10
RBE 6.9x 1011
RB 1.2x 10710 . . .
0685, 200 400 600 800 1000 1200

Time (hr)

Fig. 3. Estimation of i mole fraction in reactor effluent. Dotted line and square
2.2. Kinetic modeling with neural networks (NN model) experimental data correspond to condition A in the feed. Solid line and star
experimental data stand for condition B.

ANN inputs should be selected carefully if the best results are

to be achieved. The inputs should reflect the underlying physics 0.05 - - - - -
of the process to be analyzed. In the methanol reactor, inlet mole

fractions play a prominent role in affecting the system behavior. 0.04l

Additionally, pressure, temperature and reactor operation time

have strong effect on the rate of methanol production. Experi- T

mental data in terms of mole fractions of components reported %0-03'

by Kuechen and Hoffmanf24] have been used in this study. o

Two sets of experiments are used at two different space veloci- >Z—;.<’ 0.02f

ties. At a space velocity of 2.9 kg cat. s/mol, 118 data points for
a period of 1034 h of operation are obtained. At a space veloc-
ity of 3.1 kg cat. s/mol, 48 data points for a period of 426 h of
operation are used.
Various architectures of multi layer perceptron (MLP) and O 700 200 300 200 500 600
radial basis function network (RBFN) are used to predict exper- Time (hr)
Ime,mal regctor outlet compositions. Among these architectu re‘lcfig. 4. Methanol mole fraction estimation NN predictions as a function of time
radial basis (RB) and exact RBFN (RBE) methods were foun%r two different conditions. Circles represent experimental data for condition
to be able to generalize well. Each ANN was trained with 2/3 ofa, while squares represent condition B.
the data set and the remaining 1/3 was used for validation of the
trained NN and few data were used for validation of the hybrid o o
model as will be explained later. for the training range the network prediction of hydro-
As shown inTable 1 RBFN method is more accurate than 9€N outlet mole fraction matches the experimental data
the other ANN structuresTable 1compares the mean square Very well. o _ _
error (M.S.E.) of various networks. Among the RBFN trained F|g. 4represents the network est|mat|on_as§1funct|on oftime.
networks, RBE algorithm had a good performance and was usel's figure clearly shows the catalyst deactivation by the passage
for the generation of the kinetic data with the hybrid model (Sec©f time- Fig. Sgives NN simulations at different temperatures.
tion 3). Table 2provides the percent error between simulation
and experimental results.

0.01

. . . . . 0.07 T T T T
Fig. 3 compares the predictions of the NN with experi- \ T
mental data for two different inlet conditions, condition A, oogr | T=513
of T=513K, P=5MPa,xy, = 0.7022,xc0=0.2780,xco, = ' — T=523
0.0198 and xch, = 0.000077 and also for condition B, ' Eglg
T=513K, P=5MPa, xy, = 0.7020, xc0=0.1490, xco, = 5 + T=523
0.1490 and xcp, = 0.000085. It is obvious that the net- g
work cannot estimate well beyond the training range, but 5
2
Table 2
Comparison of predicted data with experimental data of Kuechen and Hoffmann .
at condition A T e
0 L I e rocmes
Time (h) Experimentatyy, Predictedry, Error (%) 0 200 Z;E)i(r)ne(hr;soo 800 1000
228 0.6904 0.6951 0.68 _ _ _ o _
428 0.6997 0.7006 0.12 Fig. 5. NN simulations of deactivation data at different temperatures. Feed
506 0.7010 0.7032 0.31 conditions are:P=5MPa, xy, = 0.7011, xco=0.2390, xco, = 0.0599 and

xcH, = 0.
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Fig. 6. Configuration of hybrid industrial reactor identification based on dis- EQUATION 7

cretization of reactor scale.
ASSUME OUTLETT
3. Application of hybrid model to an industrial reactor

As a third modeling effort, a hybrid neural network first
principle model is considered in this section. This model was
described briefly in Sectiol (Fig. 2) and more details will be
given here. To identify the behavior of a real reactor, the bed of
reactor is first sliced into incrementsSig. 6). At each time, inlet
temperature, feed composition and pressure are fed to the top
of the reactor. A NN is used to estimate the outlet mole fraction
of the first layer. Pressure drop is calculated from &¢§. and
outlet temperature is obtained by trial and error as demonstrated
in Fig. 7. The outlet composition, temperature and pressure of
first layer are fed to the second layer and this process goes on
until the end of reactor is reached{. 7). By repeating this pro-
cedure, temperature and composition profiles can be estimated.
The main reason for slicing the reactor is to have inlet conditions
within the range of those of the NN simulation training condi-
tions. Temperature and pressure of NN are close to the plant,
Shiraz petrochemical complex (SPC) methanol reactor. In order
to have smaller composition increments, the plant reactor has
been sliced into sections. Table 3

To validate the model, few experimental data of Kuechershiraz petrochemical methanol reactor specifications
and Hoffmann24], which were not used in training and gen-
eralization of the NN are considered. This validation may.

Eq.8is
satisfied

YES
OUTPUT
T,R, Comp.

Fig. 7. Hybrid ANN algorithm for packed bed reactor simulation.

Quantity Value

seem obvious because our NN has been trained by Kuech&ymper of tubes 2962

. ., . Length of reactor (m) 7.022
and Hoffmann reactor experimental data. But the hybrid simg density of bed (kg/f) 1132
ulation is also able to predict concentration and temperaturgoid fraction of bed (ri/m3) 0.39

profiles inside the bed. This offers an additional flexibility
that the stand alone NN model of the previous section can-

not provide.Fig. 8 gives the hybrid NN simulation results

for methanol, CO, HO and temperatures at the following Table 4
conditions:7=513K, P=5MPa,xn, = 0.7022,xco=0.2780,

i Shiraz petrochemical methanol reactor feed inlet conditions
Xco, = 0.0198,XCH4 =0, XH,0 = 0 andr=506 h. The simu-

lations show the correct behavior as those of other research&§2MY Value
[6,19]. In order to check our results further, we compared theCHsOH (mole%) 0.50
concentration of Kuechen and Hoffmaj2#], reactor outputto €Oz (mole%) 9.40
those obtained by the hybrid model. The actual concentratioﬁoo('g‘n?c'ﬁg/gz) g'gg
of methanol, HO and CO were measured at simulation condi-Hz (mole%) 65.90
tions to be 0.018, 0.0008 and 0.2700 while the hybrid modej, (mole%) 9.30
predicts these concentrations to be 0.016, 0.0009 and 0.2703, (mole%) 10.26
respective|y_ Temperature (K) 503
The hybrid NN model is validated further by using collected Pressure (ban 76.97

. . Total mol It tub I/ 0.64
industrial data from SPC methanol readt®]. Tables 3 and 4 otal molar rate per tube (molis)
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Fig. 8. Methanol, CO, KO and temperature profiles from hybrid neural network simulations carried out at condifies3 K, P=5MPa, xy, = 0.7022,

)6(3(3:0.2780,)6(;02 = 0.0198,XCH4 =0, XH,0 = 0 andr=506 h.

give reactor specification, and inlet and operating conditions

of this reactor, respectively. Introducing initial conditions and

specifications of SPC methanol reactor, hybrid NN simulations
were carried out to establish the performance of the proposed

model. Fig. 9 shows methanol mole fraction as a function of

time and bed height. To check the accuracy of results, methanol

production rate (MPR) is calculated from the equation:

t

MPR = FMw,methanol/O Ymethanolx=1 0f (11)

and is compared with plant actual output. After 100 days of
operation, the actual production was 296.5 tonnes/day while thgygle fraction of components and temperature as a function of
hybrid model predicts a production of 276.63 tonnes/day. Thig)eq height and for different times. Ttdirection is denoted

represents a very good approximation. Simulation results fopy the number of grid points used to assimilate the bed. Sharp
other components are showrfitgs. 10-13These figures show  yariation of temperature is observed in the 0-0.2 region of bed

0.055
0.05} =
0.045} £ .
0.04}
0.035}
0.03}
0.025}
0.02}
0.015}
0.01t
0.0050 5 10 15 20 25 30
Bed height (Grid point)

XCH30OH

Fig. 9. Methanol mole fraction as a function of time and bed height.

0.68
0.66f,

—e— day2

R -=— day50
0.64} S U (O da¥ 75
3 day 100

o~ 0.62}

T

< 06}
0.58}
0.56}
0.54

10 15 20
Bed height (Grid point)

Fig. 10. Hydrogen mole fraction vs. time and bed height.

0.05
0.045F
0.04}
S 0.038}
> 003}
0.025 |
0.02

5 10

15 20 25 30
Bed height (Grid point)

Fig. 11. Mole fraction of CO as a function of time and bed height.
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0.095¢ 0.055
0.05} e
0.09} % 0.045} I
T 004} —
g 0.035f v,‘—"/ == Hybird model
ol 0.085 T 0.03f ',v"' —— First principle model
8 O 0.025} 2
X o008l X 002f
: 0.015F 2
0.01} .~
0.075 0.005 5 70 15 30 35 30
Bed height (Grid point)
0.07 5 10 15 20 25 30 _ _ _ _ o -
Bed height (Grid point) Fig. 15. Comparison of hybrid and first principle models vs. bed grid points

after 25 days of operation.
Fig. 12. Dynamic C@ mole fraction profiles for industrial reactor.

05—mm——— —
0.025 0.045f P
0.04f e
0.02} i T 0.035F = —~ Hybrid model
: TS (@) —— First principle model
---- day 50 2 0.03f
o 0.015 - A0 1 G 0025}
T 0.02¢
X 001 1 0.015F
0.005 ol 4
’ 1 0.005'2
5 10 15 20 25 30
0 Bed height (Grid point)
5 10 15 20 25 30
Bed height (Grid point) Fig. 16. Comparison of hybrid and first principle models vs. bed grid points
after 50 days of operation.
Fig. 13. Estimation of water production inside the industrial reactor vs. operation
time. 0.05 —=
o045t s T
530 0.04} L
- - --—- Hybrid model
525} g 0.035¢ ‘/'" — First principal model
g —&- day 25 2 0.03f ) -
o 520} - O 0.025 g
3 —— day 100 > y
® 515 0.02 S
3 0.015f
E 510 0.01F
0.005 k2
505 5 10 15 20 25 30
Bed height (Grid point)
500 5 10 15 20 % 30

) . 1 Fig. 17. Comparison of hybrid and first principle models vs. bed grid points

Bed height (grid point) after 75 days of operation.

Fig. 14. Variation of temperature inside the industrial rector by the passage of

time and length of reactor. confirm the accurate trend of the hybrid NN model predictions.
The hybrid model simulations were performed, however, on an

height as demonstrated Fig. 14 At bed heights beyond 0.2, average of 240 times faster than the first principle simulations.

the temperature drops slowly with time. The ease of hybrid model simulation represents a major advan-
tage, especially when carrying out optimization studies.

4. Comparison of hybrid model with first principle

model 5. Conclusion and remarks

In this section, the performance of the hybrid NN model In this work, the catalytic hydrogenation of carbon dioxide
is compared with the first principle model. The first principle to methanol has been considered. Three modeling approaches
model consists of solving the governing heat, mass and pressungere investigated: a first principle model, a NN model and a
drop equations. Fifteen coupled non-linear partial differentiahybrid model. The hybrid model employs both NN model and
equations were solved numerically to obtain the reqi8.  first principle mechanistic model. The reactor outlet compo-
SPC methanol reactor conditions are used in this comparisasitions are estimated in this hybrid model based on a neural
task and the methanol mole fraction profile is selected as a conmetwork approach, while temperature and pressure are calcu-
parison criterion. The bed height has been divided into 30 gridated based on application of material and energy balances and
points and profiles of methanol concentrations at three differerd correlation to estimate pressure drop. It was found that the
times are presented versus grid pointsigs. 15-17The figures  hybrid model outperforms the other two modeling approaches
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